Выделительная система

(лектор - д.м.н., доцент С.В. Диндяев)

В ее состав входят почки, мочеточники, мочевой пузырь и мочеиспускательный канал.

<u>Почка</u> – парный орган, выполняющий следующие функции:

- 1) мочеобразование
- 2) выведение мочи
- 3) регуляция объема жидкости в организме
- 4) регуляция баланса электролитов, т.е. поддерживает кислотно-щелочное равновесие
- 5) регуляция осмотического и онкотического давления
- 6) экскреция
- 7) инкреторная функция: синтез эритропоэтина, простагландинов, ренина, калликреина, активной формы витамина Д₃, брадикинина, фактора активации тромбоцитов.

<u>Развитие почки</u> включает в себя последовательное формирование трех парных выделительных органов:

- 1) передняя почка, или предпочка (pronephros)
- 2) первичная почка, или вольфово тело (mesonephros)
- 3) постоянная или окончательная почка (metanephros).

<u>Предпочка</u> является рудиментарной и не функционирует. Она образуется в 1-й месяц внутриутробного развития из передних 8-10 сегментных ножек мезодермы. Ножки отделяются от сомитов и имеют форму стебельков. Они растут в латеральном направлении и по мере формирования в них полости превращаются в извитые трубочки – *протонефридии*. Медиальные концы протонефридий открываются в целом, а латеральные соединяются между собой, образуя мезонефральный (вольфов) проток. Проток растет в каудальном направлении.

Эта почка, как уже было сказано, не функционирует, т.к. не имеет связи с кровеносными сосудами.

<u>Первичная почка</u> (мезонефрос) выполняет выделительную функцию на значительном протяжении внутриутробного развития. В ее образовании в 1-й месяц развития организма принимают участие 20-25 сегментных ножек в области туловища зародыша. Сегментные ножки отделяются не только от сомитов, но и от спланхнотома т превращаются в канальцы — метанефридии. Латеральные концы растут в сторону мезонефрального протока и соединяются с ним. К центральным концам канальцев от аорты прорастают сосуды, образующие капиллярные клубочки. Канальцы своим центральным слепым концом обрастают клубочки и образуют их капсулу. Вместе капиллярные клубочки и капсула формируют почечные тельца.

Мезонефральный проток открывается в заднюю кишку, куда и поступает фильтрат из почечных телец.

Окончательная почка (метанефрос) появляется в течение 5-1 недели внутриутробного развития, но окончательное ее формирование заканчивается после рождения. Она образуется из мезонефрального протока и нефрогенной ткани. Нефрогенная ткань представляет собой неразделенные на сегментные ножки участки мезодермы в каудальной части туловища. Из нефрогенной ткани образуются канальцы почки. Один из концов канальцев образует капсулу, охватывающую сосудистый клубочек. А другим концом канальцы соединяются с собирательными трубками, которые образуются из мезонефрального протока. Из мезонефрального протока также дифференцируются эпителий мочеточника, почечной лоханки, почечных чашечек, сосочковых каналов.

В образовании почек принимают участие мезенхима (соединительная ткань, сосуды, гмт), ганглиозная пластинка и частично висцеральный листок спланхнотома (мезотелий серозной оболочки).

Строение почки

- I. Строма
- 1. Серозная оболочка рвст, сосуды, нерв. Аппарат, мезотелий
- 2. Жировая капсула
- 3. Собственная капсула рвст, сосуды, нерв. аппарат
- 4. Междольковые прослойки рвст с кровеносными сосудами
- 5. Кровеносные сосуды
- 6. Лимфатические сосуды
- II. Паренхима
- А. Корковое вещество, Б. Мозговое вещество
- 1. Нефроны
- 2. Собирательные трубочки
- 3. Сосочковые канальцы
- 4. Почечные чашечки
- 5. Почечные лоханки

Мозговое вещество разделено на 8-12 пирамид, которые своими вершинами свободно выступают в почечные чашечки. Корковое вещество по мере роста почки проникает между основаниями пирамид в виде почечных колонок. А мозговое вещество в виде тонких лучей врастает в корковое, образуя мозговые лучи.

Нефрон – структурно-функциональная единица почки длиной 18-50 мм, а длина всех нефронов составляет примерно 100 км. Общее число нефронов в каждой почке около 1 млн.

Выделяют 3 вида нефронов:

- 1) подкапсулярные 1-3 %
- 2) корковые (промежуточные) 75-80%
- 3) юкстамедуллярные (глубокие) 20 %.

В составе нефрона выделяют следующие отделы:

- 1) капсула, которая охватывает сосудистый капиллярный клубочек, а в совокупности они формируют почечное тельце;
- 2) проксимальный отдел (проксимальный извитой каналец);
- 3) *петля Генле* (прямой каналец), который включает в себя нисходящую часть, колено и восходящую часть;
- 4) дистальный отдел (дистальный извитой каналец).

Корковые нефроны почти целиком располагаются в корковом веществе, только колено петли Генле находится в мозговом. У юкстамедуллярных нефронов петля Генле глубоко уходит в мозговое вещество.

Кровоснабжение почки

Кровеносная система почки подразделяется на 2 части:

- 1) кортикальная
- 2) юкстамедуллярная.

Вначале обе системы представлены едиными сосудами: почечная артерия – междолевые артерии – дуговые артерии (на границе коркового и мозгового веществ) – междольковые артерии – внутридольковые артерии. От внутридольковых артерий отходят приносящие артериолы. Верхние из них направляются к корковым нефронам, а нижние – к юкстамедуллярным.

Кортикальная система: приносящая артериола распадается на многочисленные капилляры, образующие сосудистый клубочек в составе почечного тельца. Капилляры собираются в выносящие артериолы, диаметр которых примерно в 2 раза меньше диаметра приносящих артериол. В связи с этим в капиллярах клубочков высокое давление крови – 70-90 мм рт.ст. (не ниже 50 мм). Это способствует фильтрации веществ из плазмы крови в нефрон.

Выносящие артериолы, вновь распадаясь на капилляры, образуют перитубулярную сеть вокруг канальцев нефрона. В этих капиллярах давление крови низкое — 10-12 мм рт.ст. Этот факт способствует обратному всасыванию веществ из нефрона в кровь, т.е. реабсорбции. Капилляры этой сети собираются в звездчатые вены, затем в междольковые, дуговые, междолевые. Последние образуют почечные вены, выходящие через ворота почки

В юкстамедуллярной системе кровообращения диаметр приносящих и выносящих артериол примерно одинаков. Поэтому давление в капиллярах 30-40 мм рт.ст. Такое давление для фильтрации низковато. Выносящие артериолы образуют слабо развитую перитубулярную капиллярную сеть вокруг проксимальных и дистальных канальцев. Часть выносящих артериол переходит в прямые артерии, которые в мозговом веществе образуют капиллярную сеть вокруг канальцев петли Генле. Капилляры собираются в прямые вены, впадающие в дуговые. Отсюда кровь поступает междолевые, а потом в почечные вены.

В связи с указанными особенностями кровоснабжения юкстамедуллярные нефроны не принимают активного участия в мочеобразовании. Они выполняют функцию шунта, т.е. сброса крови по короткому и легкому пути.

Итак, нефрон начинается почечным тельцем, которые выполняет функцию образования мочи.

<u>Почечное тельце</u> образовано сосудистым клубочком и капсулой. Капсула состоит из 2-х листков – внутреннего и наружного.

Сосудистый клубочек состоит примерно из 100 капилляров с фенестрированным и порозным эндотелием. Эндотелиоциты располагаются на внутренней поверхности трехслойной базальной мембраны. А с наружной стороны базальной мембраны расположен эпителий внутреннего листка капсулы. Эндотелиоциты имеют поры со специальной диафрагмой. Поры занимают около 30% эндотелиальной выстилки. Они рассматриваются как основной путь фильтрации, но допускается и трансэндотелиальный путь, минуя поры. Есть предположение, что эндотелиоциты также участвуют в образовании вещества базальной мембраны.

Капсула клубочка по форме напоминает двустенную чашу. Между листками располагается щелевидная полость, которая переходит в просвет проксимального канальца нефрона.

Внутренний листок проникает между капиллярами сосудистого клубочка и охватывает их почти со всех сторон. Этот листок образован крупными эпителиальными клетками – *подоцитами*. Подоциты располагаются на наружной поверхности 3-хслойной мембраны, которая является, т.о., общей для эндотелиоцитов и подоцитов. От тел подоцитов отходит несколько больших широких отростков – *цитопрабекул*. От цитотрабекул начинаются многочисленные мелкие отростки – *цитоподии*. Цитоподии прикрепляются к базальной мембране. Между цитоподиями имеются узкие щели, сообщающиеся через промежутки между телами подоцитов с полостью капсулы. Эти щели называются *фильтрационными*. Они имеют ширину 30-40 нм и затянуты диафрагмой – сетью волокнистых структур. Размер ячеек сети около 10 нм.

Подоциты участвуют также в иммуновоспалительных реакциях – у них имеются рецепторы к антигенам и комплементу.

Базальная мембрана, как уже сказано, состоит из 3-х слоев: менее плотные (светлые) наружный и внутренний, более плотный (темный) средний слой. В среднем слое имеются микрофибриллы, которые образуют сеточку с диаметром ячеек около 7 нм.

В состав базальной мембраны входит несколько специфических белков: коллаген 4 типа и протеингликаны — энтактин и фибронектин. Коллагеновые белки обеспечивают структурирование базальной мембраны. Протеингликаны формируют отрицательный заряд мембраны, который является основным барьером для белковых молекул плазмы, имеющих при физиологических значениях рН отрицательный заряд.

Базальная мембрана вместе с подоцитами и эндотелиоцитами образует фильтрационный барьер. Через этот барьер из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу (т.е. происходит первая фаза мочеобразования — фильтрация). Этот фильтр обладает избирательной проницаемостью. Через него проходят только вещества размером меньше диаметра ячеек мембраны. В норме через него не проходят форменные элементы крови, крупномолекулярные белки.

В тех местах сосудистого клубочка, где отсутствуют подоциты, располагаются мезангиальные клетки и основное вещество – матрикс. Матрикс образован коллагеном и адгезивным белком ламинин.

Мезангиальные клетки имеют отростчатую форму и выполняют следующие функции:

- 1) фагоцитоз остаток базальных мембран,
- 2) сократительная активность за счет миофиламентов эти клетки уменьшают площадь поверхности стенки капилляров, уменьшая, т.о., уровень фильтрации,
- 3) синтез макромолекул межклеточного вещества, присутствующего между капиллярами,
- 4) синтез фактора активации тромбоцитов,
- 5) участие в иммунных реакциях,
- 6) синтез ренина (в определенных условиях).

Выделяют 3 вида мезангиальных клеток:

- 1) гладкомышечные,
- 2) макрофагические,
- 3) транзиторные (моноциты из кровотока).

Наружный листок капсулы клубочка образован одним слоем плоских и кубических эпителиоцитов, лежащих на базальной мембране. Этот эпителий переходит в эпителий проксимального отдела нефрона.

<u>Проксимальный отдел</u> нефрона имеет вид извитого канальца. Стенка его образована высоким призматическим каемчатым эпителием. Здесь происходит облигатная реабсорбция — т.е. обратное всасывание из первичной мочи в кровь капилляров перитубулярной сети воды (50%) белков, глюкозы, аминокислот, электролитов.

Особенности строения эпителиоцитов проксимального отдела:

- 1) наличие щеточной каемки с высокой активностью щелочной фосфатазы, которая участвует в реабсорбции глюкозы,
- 2) в цитоплазме имеются пиноцитозные пузырьки и лизосомы с протеолитическими ферментами, необходимыми для обратного всасывания белков,
- 3) имеется базальная исчерченность, которая образована внутренними складками цитолеммы и расположенными между ними митохондриями,
- 4) митохондрии эпителиоцитов участвуют в обратном активном всасывании электролитов, т.к. содержат сукцинатдегидрогеназу и др. необходимые для этого процесса ферменты,
- 5) складки цитолеммы необходимы для пассивного обратного всасывания воды.,
- 6) большое количество включений

Функции проксимального отдела

- 1) облигатная реабсорбция (т.е. обратное всасывание) из первичной мочи в кровь капилляров перитубулярной сети воды (50%) белков, глюкозы, аминокислот, электролитов
- 2) экскреция органических оснований, мочевины, лекарственных в-в

<u>Петля Генле</u> состоит из нисходящей и восходящей частей и расположенного между ними колена.

Нисходящая часть — это тонкий прямой каналец диаметром 13-15 мкм. Его стенка выстлана одним слоем плоских эпителиоцитов. Цитолемма этих клеток образует глубокие внутренние складки. В этой части петли происходит пассивное всасывание в кровь воды (25%).

Восходящая часть петли представляет собой уже толстый, но тоже прямой каналец диаметром до 30 мкм. Он выстлан кубическими и цилиндрическими эпителиоцитами. Здесь происходит реабсорбция натрия.

<u>Дистальный отдел</u> нефрона образован извитым канальцем диаметром 20-50 мкм. Он выстлан цилиндрическими эпителиоцитами, лишенными щеточной каемки, но с выраженной базальной исчерченностью – т.е. скоплением большого числа митохондрий в базальной части клетки. В этом отделе происходит реабсорбция воды (10%), электролитов, секреция азотистых производных (?).

Противоточно-множительный механизм: при реабсорбции электролитов в восходящей части петли Генле жидкость в канальцах становится разведенной, а в интерстиции повышается осмотическое давление, что вызывает пассивное обратное всасывание воды из просветов дистальных канальцев и собирательных трубок.

Собирательные трубки выстланы однослойным кубическим или низким цилиндрическим эпителием. В нем различают 2 вида клеток:

- 1) светлые они бедны органеллами, имеют внутренние складки и участвуют в пассивном всасывании из мочи воды,
- 2) темные клетки похожи по строению на обкладочные (париетальные) клетки желез желудка, выделяют ионы водорода.

Итак, весь процесс мочеобразования можно разделить на 3 фазы:

- 1) фильтрация осуществляется в почечных тельцах и приводит к образованию первичной мочи,
- 2) реабсорбция (облигатная и факультативная) протекает в канальцах нефрона, приводит к качественным и количественным изменениям мочи.
- 3) секреторная фаза осуществляется в собирательных трубках, в результате реакция мочи становится слабокислой.

Эндокринная система почек.

Она представлена следующими элементами:

- 1) юкстагломерулярный аппарат
- 2) простагландиновый аппарат
- 3) клетки APUD-системы, содержащие серотонин
- 4) калликреин-кининовая система.

Простагландиновый аппарат состоит из 2 типов клеток:

- 1) интерстициальные клетки имеют мезенхимальное происхождение и располагаются в строме мозговых пирамид. Имеют отростчатую полигональную форму. Часть их отростков оплетает канальцы петли Генле, а другая часть кровеносные сосуды. В цитоплазме имеются липидные капли.
- 2) Нефроциты собирательных трубок это светлые призматические клетки.

Оба вида клеток продуцируют простагландины, например, Е2. Простагландин Е2 вызывает расслабление гмк кровеносных сосудов почки, результатом чего является снижение артериального давления.

Юкстагломерулярный аппарат включает в себя следующие структуры:

- 1) юкстагломерулярные (околоклубочковые) клетки синтезируют ренин, эритропоэтин
- 2) плотное пятно
- 3) клетки Гурмагтига (юкставаскулярные)
- 4) мезангиальные клетки.

Юкстагломерулярные клетки располагаются в средней оболочке приносящих артериол (небольшое количество в выносящих). Предполагается, что это видоизмененные гмк, имеют полигональную или овальную форму. Хорошо развита гранулярная ЭПС и комплекс Гольджи. В цитоплазме секреторные гранулы, содержащие ренин.

Плотное пятно образовано клетками дистального извитого канальца в месте его похождения между приносящей и выносящей артериолами. Эти клетки более высокие, почти лишены внутренних складок. Они тесно контактируют с капиллярами сосудистого клубочка и приносящей артериолой, т.к. в этом участке базальная мембрана очень тонкая или вообще отсутствует.

Клетки плотного пятна регистрируют содержание ионов натрия в моче и воздействуют на юкстагломерулярные клетки.

Юкставаскулярные клетки локализуются в пространстве между приносящей и выносящей артериолами и плотным пятном. Для этих клеток характерна овальная форма с длинными отростками и наличие фибриллярных структур в цитоплазме. Предполагается, что они синтезируют ренин при истощении юкстагломерулярных клеток.

Итак, основная функция юкстагломерулярного аппарата почек синтез ренина. Ренин оказывает сильное сосудосуживающее действие. Происходит это следующим образом: ренин — ангиотензиноген (печень) — ангиотензин 1 - ангиотензин 2 (в легких) — альдостерон — усиление реабсорбции натрия в дистальных извитых канальцах — задержка в организме воды — повышение артериального давления.

<u>Калликреин-кининовая система</u> представлена нефроцитами дистальных канальцев, которые секретируют калликреин. Эти нефроциты располагаются вблизи плотного пятна. Попав в просвет канальцев, калликреин взаимодействует с кининогенами. В результате образуются кинины, которые воздействуют на мозговое вещество почки и вызывают высвобождение простагландинов.

Интерстициальными клетками мозгового вещества почек синтезируются также

- 1) брадикинин он является вазодилататором сосудов почек,
- 2) эритропоэтин стимулирует эритропоэз.

На функцию почек оказывает влияние атриопептин (натрийуретический фактор мозга). Его синтезируют кардиомиоциты правого предсердия, желудочков сердца, некоторые нейроны цнс. Атриопептин усиливает клубочковую фильтрацию, подавляет синтез и секрецию ренина, ингибирует реабсорбцию натрия, вызывает расслабление гмк артериол.

Мочевыводящие пути

К ним относятся почечные чашечки и лоханки, мочеточники, мочевой пузырь и мочеиспускательный канал.

Источники развития: мезонефральный проток (эпителий), мезенхима, ганглиозная пластинка, висцеральный листок спланхнотома.

Строение этих путей, за исключением, мочеиспускательного канала схоже. В них различают 4 оболочки:

- 1) слизистая состоит из переходного эпителия и собственной соединительнотканной пластинки,
- 2) подслизистая основа,
- 3) мышечная оболочка,
- 4) наружная оболочка (адвентициальная или серозная).

В стенке *почечных чашечек и лоханок* мышечная оболочка образована 2 слоями гмк: внутреннего продольного и наружного циркулярного. Наружная оболочка, состоящая из рвст, без резких границ переходит в соединительную ткань вокруг кровеносных сосудов.

В мочеточниках имеются глубокие продольные складки, обеспечивающие растяжение мочеточников. В подслизистой основе нижней части располагаются мелкие альвеолярнотрубчатые слизистые железы. В нижней же части мышечная оболочка состоит уже не из 2-х слоев, а из 3-х: внутреннего и наружного продольного и среднего циркулярного. Снаружи мочеточники покрыты рвст.

В слизистой оболочке мочевого пузыря также имеются многочисленные складки. Они отсутствуют в переднем отделе дна пузыря, где в него впадают мочеточники и выходит мочеиспускательный канал. Этот участок имеет форму треугольника и здесь отсутствует подслизистая основа. В собственной пластинке слизистой оболочки этого участка располагаются железы.

Мышечная оболочка состоит из 3-х слоев гмк: внутреннего и наружного продольного и среднего циркулярного. В шейке мочевого пузыря циркулярный слой образует сфинктер. Наружная оболочка на верхнезадней и частично на боковых поверхностях представлена серозной оболочкой, а в остальных участках – адвентициальной.

Мочеиспускательный канал

Мочеиспускательный канал (уретра) — идущая от мочевого пузыря трубка. Мужская уретра проходит в половом члене и участвует в половой функции. Её строение будет рассмотрено при изучении мужской половой системы.

Женская уретра — трубка длиной 2-6 см. Её стенка состоит из слизистой и мышечной оболочек. Слизистая оболочка образует продольные складки. Эпителий большей части многорядный цилиндрический, а в области наружного отверстия — многослойный плоский.

Собственный слой слизистой оболочки содержит мелкие железы (уретральные) и хорошо развитые венозные сплетения.

Мышечная оболочка состоит из двух слоев гмк – внутреннего продольного и наружного циркулярного. У наружного отверстия уретры появляются поперечнополосатые мышечные волокна, которые формируют наружный сфинктер.