Tatoonshons CICTEME

Основные показатели эритроцитарной системы

1. Эритроцитов м: 4,5 – 5,0 Т/л

ж: 3,5 - 4,5 Т/л

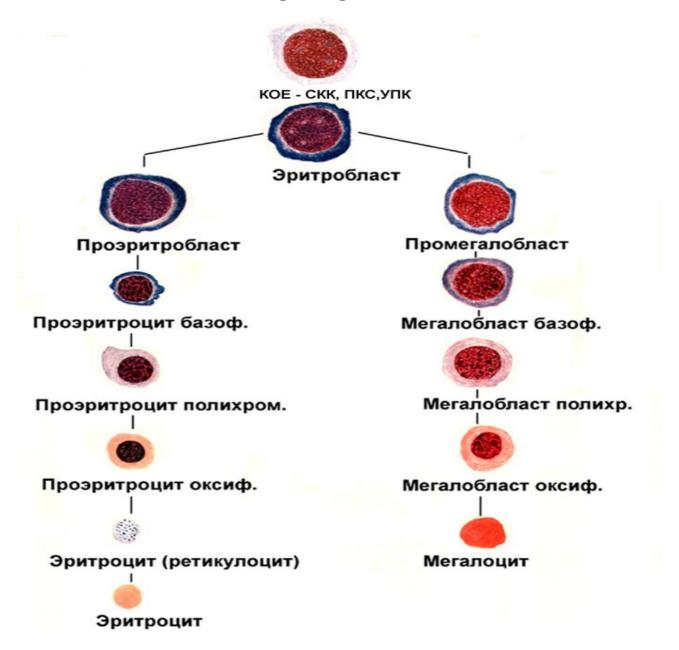
2. Гемоглобина м: 130 - 160 г/л

ж: 120 - 140 г/л

3. Цветовой показатель 0,86 - 1,1

4. Ретикулоцитов 0,2 - 1,0% 2 - 10%

АНЕМИИ – патологическое состояние, характеризующееся уменьшением концентрации Hb и в подавляющем большинстве случаев и Эр в единице объема крови и изменениями качественного состава эритроцитов.


Качественные изменения эритроцитов

Они касаются в основном степени их зрелости, размеров, формы, окраски, структуры, биохимических свойств и т.д.

Классификация

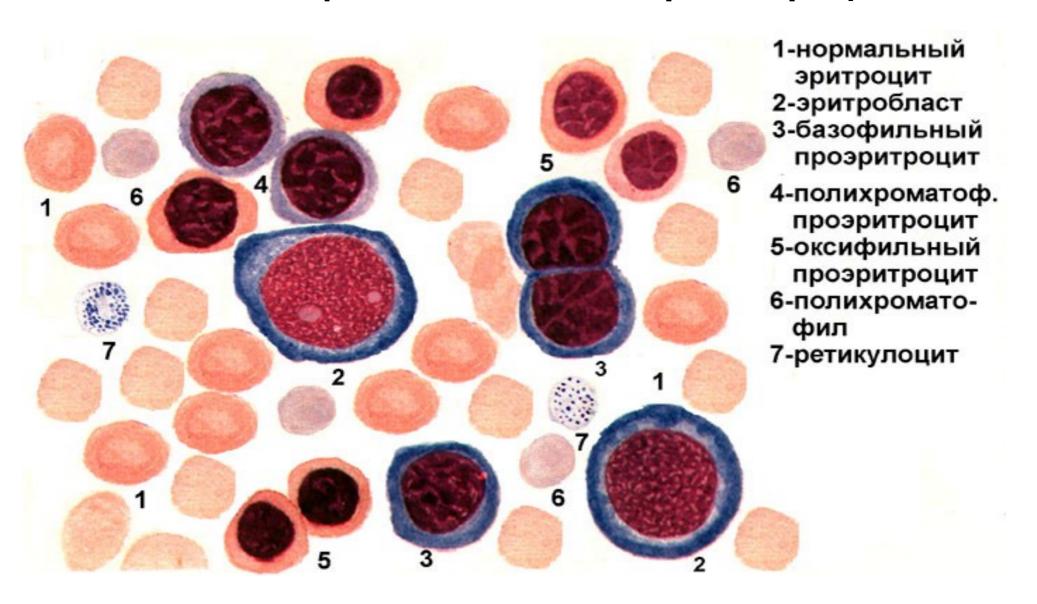
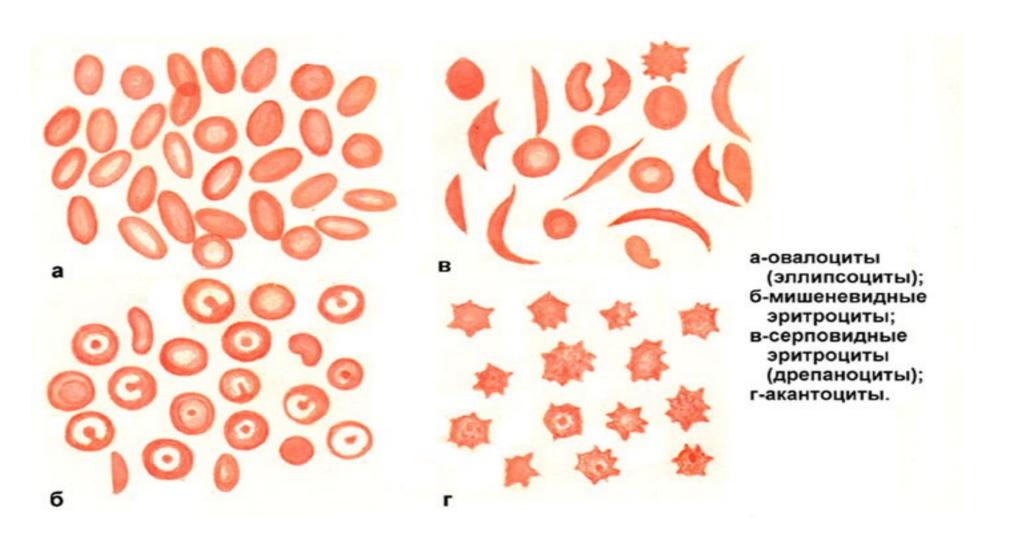
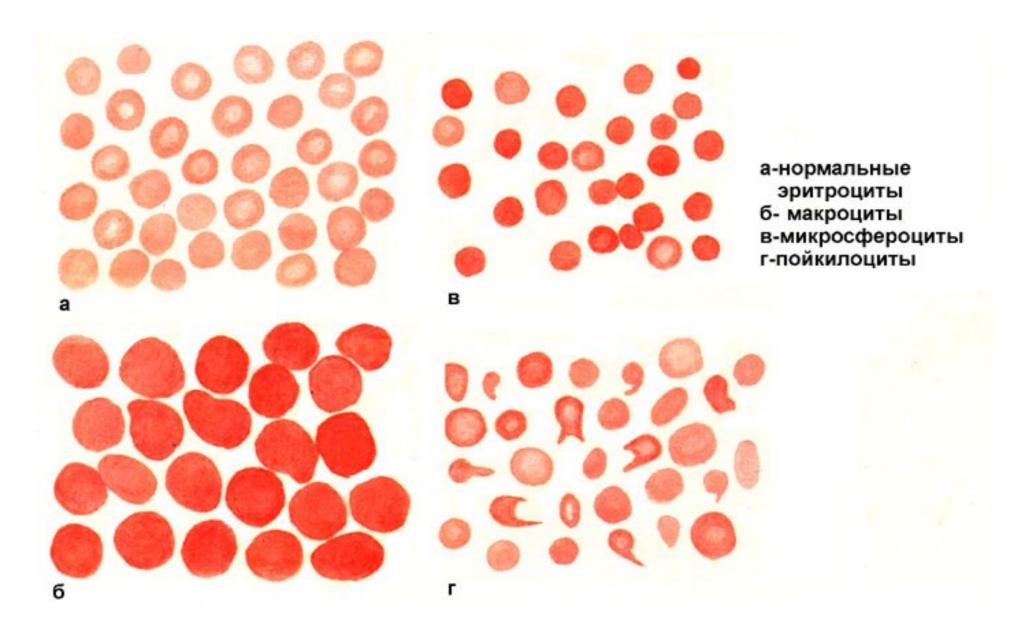

- 1. Регенеративные (клетки физиологической регенерации)
- 2. Дегенеративные
- 3. Клетки патологической регенерации

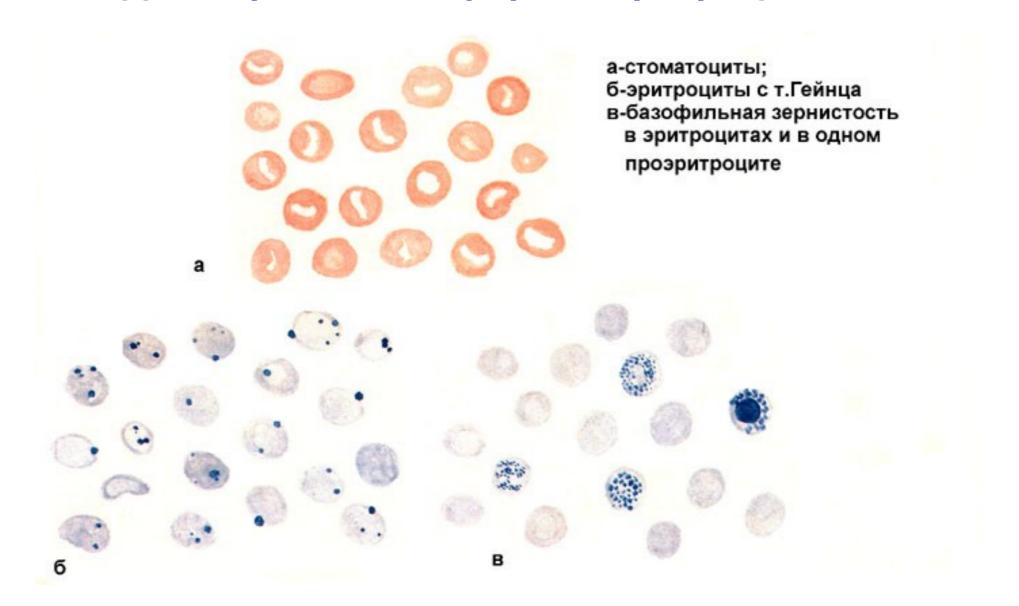
Схема эритропоэза

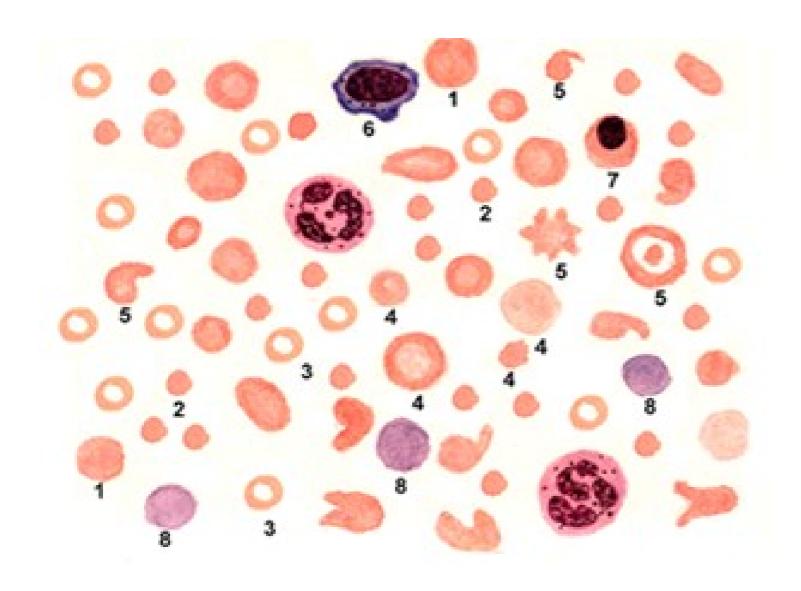

- Регенеративные формы клетки физиологической регенерации. Появление их в крови является показателем регенерации, то есть усиленного эритропоэза, признаком омоложения крови и расценивается чаще как процесс компенсации.
- **1. Эритробласты** ядерные клетки, они характеризуют глубокую степень омоложения, появляются в периферическом русле при тяжелых анемиях.
- 2. Проэритроциты (нормобласты, нормоциты) встречаются чаще других клеток физиологической регенерации. Это ядерные эритроциты и по степени созревания выделяют:
 - а) базофильные, б) полихроматофильные, в) оксифильные.
- 3. Полихроматофилы незрелые безядерные Эр, не полностью насыщенные Hb, воспринимают как основной (синий), так и кислый (красный) красители.
- **4. Увеличение ретикулоцитов** в периферической крови (в норме 0,2 1,0% или 2-10 ‰).

Клетки физиологической регенерации



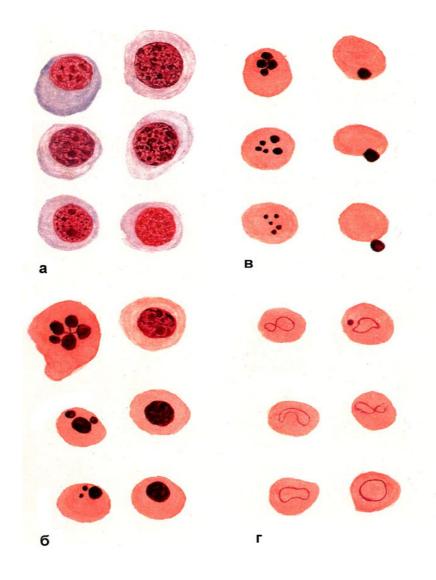
- **П Дегенеративные формы** появление их в крови является признаком угнетения эритропоэза и свидетельствует о неполноценной деятельности костного мозга:
- **1. Анизоциты** эритроциты разных размеров (в норме СДЭ равен 7-8 мкм), могут быть макро- и микроциты.
- **2. Пойкилоциты** эритроциты различной формы. Как правило основой этого являются нарушения свойства мембраны эритроцита, свидетельствует о неполноценной деятельности костного мозга, неэффективности эритропоэза. Продолжительность жизни Эр снижена.
- **3. Гипохромия** эритроциты с малым содержанием Hb. Расположен Hb по периферии эритроцита (анулоциты).
- **4. Гиперхромия** эритроциты чрезмерно насыщены Hb, они более интенсивно окрашены и без просветления в центре.
- **5. Анизохромия** в периферической крови имеются гипо- и гиперхромные эритроциты, поэтому эритроциты имеют различную степень окраски.
- 6. Гемоглобиновая дегенерация эритроциты с неравномерным распределением Нb, чаще это связано с изменением структуры Нb. В основе этого может быть замена одной аминокислоты на другую, например глютаминовой кислоты на валин. Это имеет место при серповидноклеточной анемии.
- 7. Эритроциты с патологическими включениями: а) эритроциты с токсической зернистостью, эритроциты с тельцами <u>Гейнца-Эрлиха</u>, которые являются следствием коагуляции белка в цитоплазме эритроцита под влиянием токсических факторов; б) эритроциты с вакуолизацией цитоплазмы и ядра.


Дегенеративные формы эритроцитов



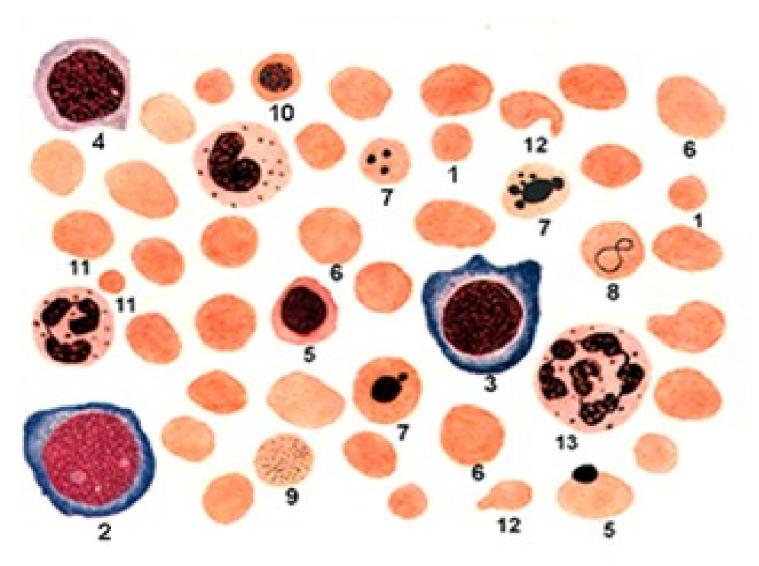
Дегенеративные формы эритроцитов

Дегенеративные формы эритроцитов



- 1- нормальный эритроцит
- 2 микроцит
- 3 гипохромный эритроцит
- 4 анизоцитоз
- 5 пойкилоцитоз
- 6 базофильный проэритроцит
- 7 оксифильный проэритроцит
- 8 полихроматофил

- **III Клетки патологической регенерации** появление их в крови является признаком смены кроветворения.
- 1. Мегалобласты крупные клетки (>10 мкм), содержат ядро, образуются из эритробласта при смене кроветворения. Они подразделяются на базофильные, полихроматофильные и оксифильные.
- 2. Мегалоциты крупные гиперхромные эритроциты.
- 3. Эритроцит с базофильной пунктацией, которая объясняется тем, что при мегабластическом типе кроветворения клетка освобождается от ядра не простым выталкиванием ядра, а путем кариорексиса, поэтому в цитоплазме эритроцитов видны остатки ядра в виде зернистости.
- 4. К клеткам патологической регенерации относятся и эритроциты с включениями (которые являются одновременно и признаком незавершенного эритропоэза):
 - а) эритроциты с тельцами Жолли т.е. остатками ядерной субстанции. При повышенной продукции эритроцитов последнее деление эритробласта может быть неполным с образованием ядерных сателлитов.
 - б) эритроциты с кольцами Кебота с остатками ядерной оболочки.


Клетки патологической регенерации

а - мегалобласты полихроматофильные

в, г - остатки ядерных образований в мегалоцитах

б - мегалобласты оксифильные

- 1 эритроцит
- 2 эритробласт
- 3 мегалобласт базофильный
- 4 мегалобласт полихроматофильный
- 5 мегалобласт оксифильный
- 6 мегалоциты
- 7 эритроциты с т.Жолли
- 8 эритроцит с к.Кебота
- 9 эритроцит с базофильной пунктацией
- 10 проэритроцит оксифильный
- 11 анизоциты
- 12 пойкилоциты
- 13 гигантский гиперсегментированный нейтрофил

Классификация анемий

В основу положена гематологическая характеристика, а также этиологические и патогенетические факторы

Гематологическая классификация анемий

Гематологическая

классификация анемий

(основана на гематологической характеристике, т.е. по отдельным частным признакам)

1. По величине цветового показателя (ЦП) (т.е. степени насыщения отдельного эритроцита гемоглобином)

- а) нормохромная ЦП равен 0,86 1,1
- б) гиперхромная ЦП > 1,1
- в) гипохромная ЦП < 0,85

Эр. - 1,5 T/л
HB - 60 г/л
$$\rightarrow$$
 ЦП = $\frac{60 \times 0,3}{15} = \frac{18}{15} = 1,2$

2. По типу эритропоэза (кроветворения)

- а) эритробластическая анемия с нормальным (постэмбриональным) типом эритропоэза.
- б) мегалобластическая с патологическим (эмбриональным) типом кроветворения. В чистом виде встречается редко.
- в) мегало-макро- (нормо) эритробластическая со смешанным типом кроветворения.

- 3. По величине эритроцитов, то есть по СДЭ (средний диаметр эритроцита).
 - а) нормоцитарная, СДЭ равен 7,2 8 мкм
 - б) макроцитарная СДЭ > 8,1 мкм
 - в) мегалоцитарная СДЭ > 12 13 мкм
 - г) микроцитарная СДЭ < 7,2 мкм

4. По состоянию костно-мозгового кроветворения,

т.е. по способности костного мозга к регенерации, которая зависит от функционального состояния костного мозга и отражает разную степень компенсации (в том числе и адекватность терапии):

- а) (Гипер) регенеративные анемии
- б) Гипорегенеративные анемии
- в) Арегенеративные анемии

Этиологическая и патогенетическая классификация анемий.

(дается в сокращенном виде по М.П.Кончаловскому и И.А.Кассирскому)

В основе патогенеза анемий лежат три основных механизма:

- 1. Кровопотеря
- 2. Повышенное кроворазрушение
- 3. Нарушение кровообразования (эритропоэза)

Этиологическая классификация анемий

К анемиям, связанным с нарушением кроветворения относятся следующие:

- а) Дефицитные анемии
- б) Анемии, связанные с поражением эритроидно-го ростка:
 - 1) гипо-, апластические анемии
 - 2) ахрестические
 - 3) дисрегуляторные анемии
 - 4) метапластические

Таким образом, в основе анемий могут лежать 2 основных патогенетических фактора:

- **1. Убыль эритроцитов**, превышающая регенераторную способность костного мозга (кровопотеря, гемолиз).
- **2. Недостаточная продукция эритроцитов**, вследствие нарушения кровообразования (при недостатке факторов кроветворения или их неусвоении и /или поражением эритроидного ростка).

Так как при всех анемиях снижается уровень гемоглобина Hb, а следовательно уменьшается кислородная емкость крови, то у больных, страдающих анемией возникает гипоксический синдром (гемическая гипоксия).

5. Классификация анемий по тяжести

(в основу положена прежде всего степень снижения эритроцитов и Hb в единице объема крови)

1 степень – легкая анемия - Эр снижено до 2,5 – 3,0 Т/л, Hb - до 80 -100 г/л

2 степень — средняя степень тяжести анемии — Эр снижено до 2,0-2,5 Т/л, Hb — до 60-80 г/л

3 степень – тяжелая анемия - Эр < 2,0 Т/л, Hb < 60 г/л

Признаками тяжести анемий также могут быть:

- 1. Степень омоложения красной крови: количество проэритроцитов и эритробластов.
- 2. Наличие и количество клеток патологической регенерации.
- 3. Выраженность признаков дегенерации:

4. Снижение содержания ретикулоцитов – прогностически неблагоприятный признак, который свидетельствует о подавлении физиологического эритробластического типа кроветворения.

Отдельные виды анемий

Постеморрагические анемии

Постгеморрагические анемии классифицируются на острые и хронические.

Острые постгеморрагические анемии

Они возникают после быстрой массивной кровопотери.

В развитии острой анемии выделяют несколько фаз:

- I фаза рефлекторная фаза компенсации
- **П фаза** гидремическая фаза компенсации
- **ІІІ фаза** костно-мозговая фаза компенсации

По гематологической характеристике постгеморрагические анемии могут соответствовать следующей классификации:

- 1. По цветовому показателю нормо , гипохромные
- 2. По типу эритропоэза эритробластические
- 3. По среднему диаметру эритроцитов нормоцитарные
- 4. По выраженности регенерации регенеративные (гипер-)

Хронические постгеморрагические анемии имеют все проявления железодефицитных анемий (так как с кровопотерей теряется и Fe).

Анемии, связанные с нарушением эритропоэза

Железодефицитные анемии.

Они занимают наибольший удельный вес среди всех анемий (составляют 70-80%). В основе лежит нарушение обмена **Fe** в организме.

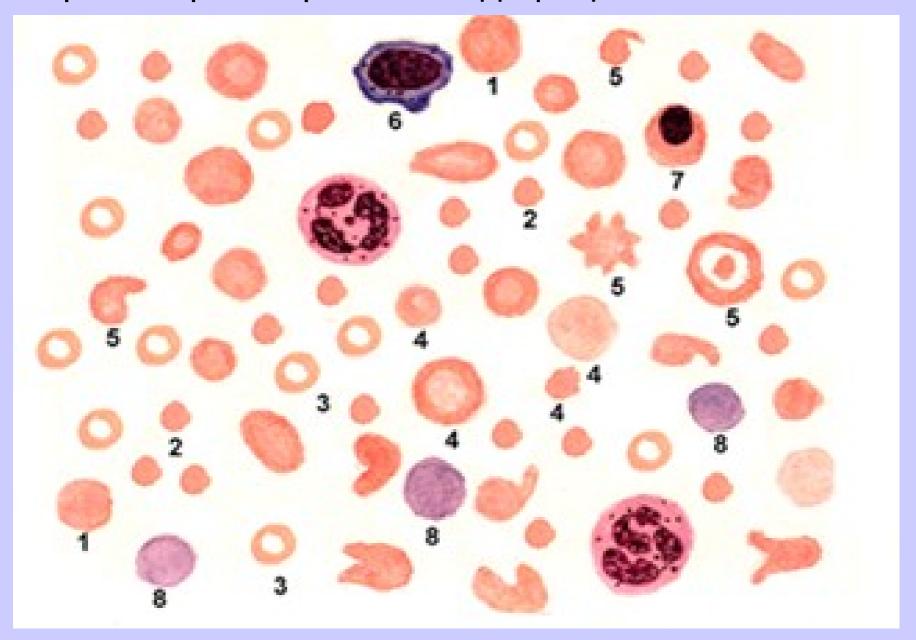
Дефицит железа развивается в результате нарушения баланса между его поступлением, использованием и потерей.

Причины железодефицитных анемий:

- 1. Хронические небольшие повторные кровопотери.
- 2. Неадекватное поступлением Fe в организм.
- 3. Нарушение всасывания Fe.
- 4. Нарушение транспорта Fe.
- 5. Нарушение депонирования Fe в печени.
- **6. Нарушение утилизации Fe**, то есть нарушение встраивания железа в гем.

Такие анемии называются железорефрактерные, сидероахрестические или сидеробластные анемии

В основе сидеробластных анемий лежит дефект ферментов, участвующих в синтезе гема.


Дефект ферментов может быть **наследственного и приобретенного** характера.

Врожденные анемии наследуются аутосомно-рецессивным путем. При этом имеет место недостаток ферментов: аминолевулинсинтетазы и копропорфириногеноксидазы.

Приобретенные сидеробластные анемии.

Патогенез и картина крови

Картина крови при железодефицитной анемии

По гематологической характеристике железодефицитные анемии могут соответствовать следующей классификации:

- 1. по цветовому показателю гипохромные
- 2. по типу эритропоэза эритробластические
- 3. по среднему диаметру эритроцитов микроцитарные
- 4. по выраженности регенерации гипорегенеративные

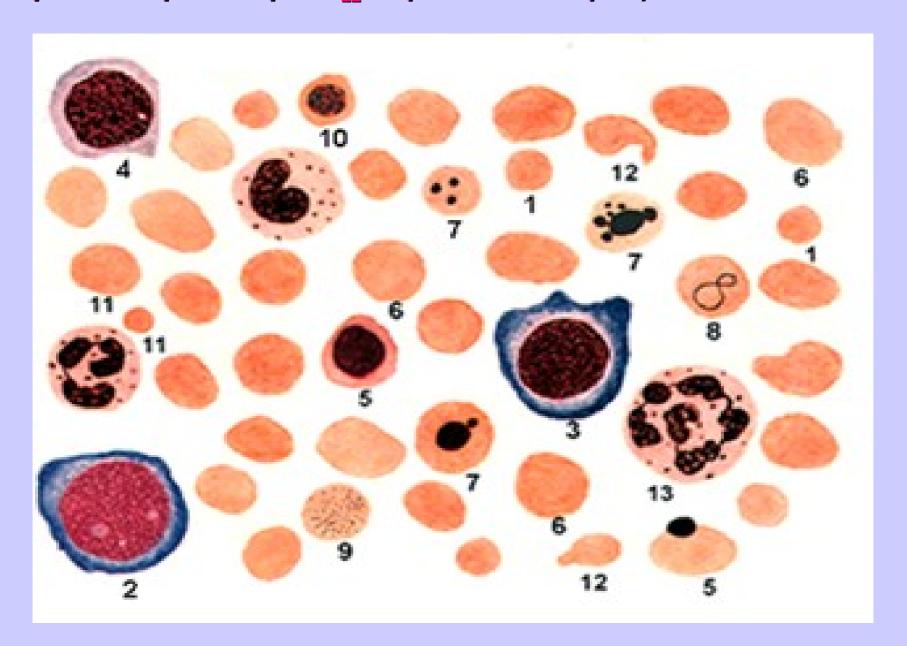
B₁₂ - и фолиеводефицитные анемии

Этиология В₁₂ - и фолиеводефицитных анемий

- 1. Алиментарная недостаточность.
- 2. Нарушение всасывания витамина В₁₂.
- 3. Уменьшение содержания витамина В₁₂ в кишечнике.
- 4. Нарушение транспорта витамина В12.
- 5. Нарушение депонирования в печени.
- 6. Повышенное расходование витаминов B₁₂ и фолиевой кислоты.
- 7. Нарушение усвоения костным мозгом витамина B₁₂ и фолиевой кислоты (ахрестические анемии).
- 8. Наследственное отсутствие рецепторов к витамину B₁₂ (синдром Имерслунда).

Фактор Кастла – транскоррин гастромукопротеид

Пернициозная анемия Аддисона – Бирмера


эритроциты с т.Жолли и к. Кебота

Метотрексат

Патогенез и картина крови

В12 - и фолиеводефицитных анемий

Картина крови при B₁₂ – фолиеводефицитной анемии

По гематологической характеристике B_{12} – и фолиеводефицитные анемии соответствуют следующей классификации:

- 1. По цветовому показателю гиперхромные
- 2. По типу эритропоэза мегалоэритробластические
- 3. По среднему диаметру эритроцитов макро-, мегалоцитарные
- 4. По выраженности регенерации гипорегенеративные

Данные анемии относятся к тяжелым, так как в разгар заболевания отмечается резкая степень снижения Эр и Нb, появляются клетки патологической регенерации (идет смена кроветворения), глубокая степень омоложения крови (появляются эритробласты), отмечается резкая степень выраженности дегенерации, уменьшение количества ретикулоцитов (что свидетельствует о подавлении эритробластического типа кроветворения)

Гипо- и апластические анемии.

Связаны с нарушением кроветворения. Данные анемии относятся к прогностически неблагоприятным, основным звеном патогенеза которых является резкое угнетение кроветворения.

Классификация гипо- и апластических анемий

1. Врожденные, наследственно обусловленные

2. Приобретенные:

- а) первичные
- б) вторичные

Врожденная форма апластической анемии встречается редко, примером может служить анемия Фанкони. В основе лежит наследование мутантного гена по рецессивному типу. У больных обнаруживаются разнообразные хромосомные аберрации в кроветворных клетках. При этом наблюдается повреждение: а) либо стволовой клетки родоначальной для грануло-, эритро-, и тромбоцитопоэза, либо дефект микроокружения стволовой клетки, а это препятствует нормальной жизнедеятельности стволовой клетки.

Приобретенные формы апластической анемии. Этиология

Они связаны с действием повреждающих факторов:

- 1. Ионизирующее излучение.
- 2. Химические факторы: анилиновые красители, пары ртути, бензин, бензол и его производные, соединения мышьяка, инсектициды (ДДТ).
- 3. Длительное применение лекарственных препаратов: цитостатические средства, антибиотики, сульфаниламиды, противовоспалительные, противотуберкулезные.
- 4. Острая вирусная инфекция, в том числе бактериальная (протекающая с тяжелой интоксикацией).
- 5. При лейкозах, метастазировании опухолевых клеток в костный мозг (метапластические анемии).
- 6. Нередко в основе лежит иммунный конфликт.

Но более, чем в 50% случаев этиология данных анемий остается невыясненной.

Патогенез и картина крови гипо- и апластических анемий

По гематологической характеристике гипо- и апластические анемии соответствуют следующей классификации:

- 1. По цветовому показателю нормохромные
- 2. По типу эритропоэза эритробластические
- 3. По среднему диаметру эритроцитов нормоцитарные
- 4. По выраженности регенерации гипо-, арегенеративные

Данные анемии относятся к тяжелым анемиям.

Клиническая картина их проявляется сочетанием трех ведущих синдромов: гипоксического — в результате снижения Нb и эритроцитов, геморрагического — вследствие дефицита тромбоцитов и нарушения гемостаза и иммунодепрессивного — из-за дефицита гранулоцитов, обеспечивающих антимикробную защиту (фагоцитоз).

Гемолитические анемии

Гемолитические анемии, связанные с повышенным кроворазрушением.

Классификация гемолитических анемий:

- I. Приобретенные. Чаще они связаны с внеэритроцитарными измененниями, имеет место внутрисосудистый гемолиз в результате повреждения мембраны эритроцитов.
- II. Врожденные, наследственно обусловленные, связаные с внутриэритроцитарными изменениями.

Приобретенные гемолитические анемии.

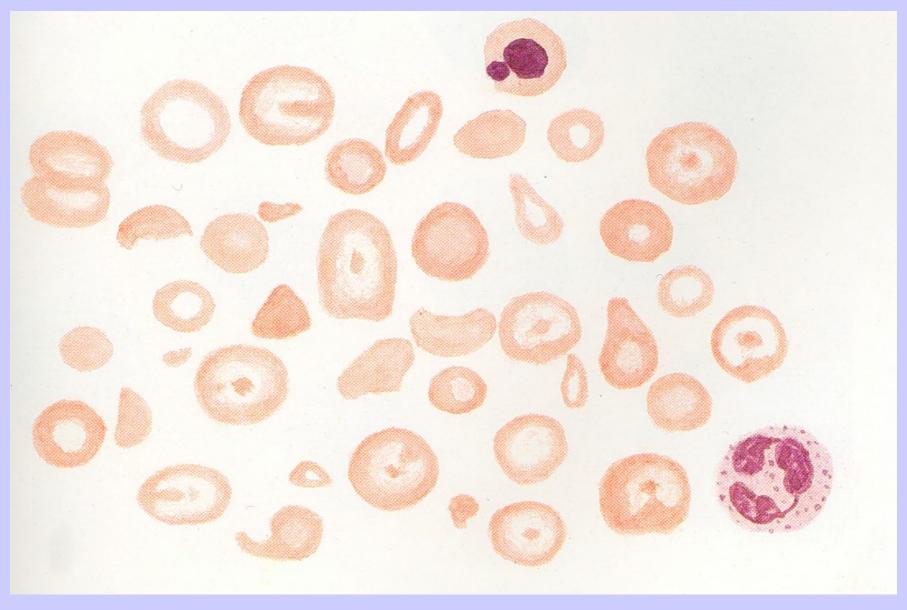
Они бывают иммунной (связаны с антителообразованием) и неиммунной природы.

Пароксизмальная ночная гемоглобинурия

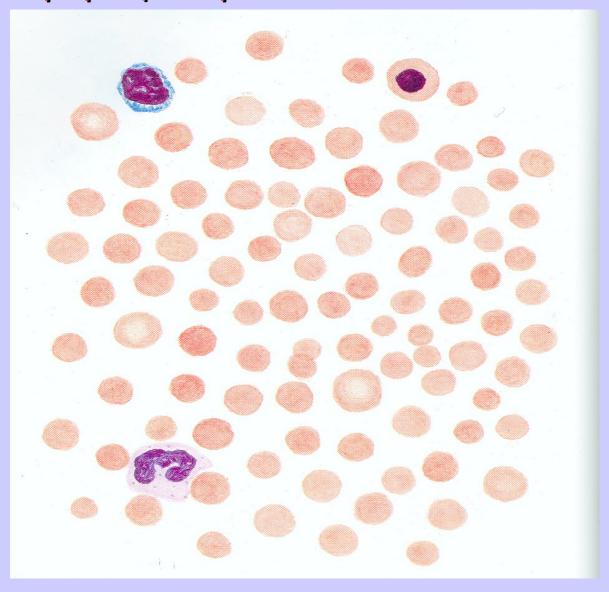
Картина крови при гемолитических анемиях неоднородна, и данные анемии могут иметь свои особенности, однако наиболее общими признаками этих анемий являются: нормохромия (реже гипохромия), нормоцитоз (реже микроцитоз), токсическая зернистость. Может быть достаточно высокий ретикулоцитоз (более 100%), появляются ядросодержащие эритроциты, отмечается умеренная лейкопения, тромбоцитопения, гемоглобинурия, билирубинемия.

По гематологической характеристике приобретенные гемолитические анемии соответствуют следующей классификации:

- 1. По цветовому показателю гипо-, гипер-, нормохромные
- 2. По типу эритропоэза эритробластические
- 3. По среднему диаметру эритроцитов нормоцитарные
- 4. По выраженности регенерации регенеративные, при тяжёлых формах гипорегенеративные


II Наследственные гемолитические анемии

Различают три группы наследственных гемолитических анемий: гемоглобинопатии, энзимопатии и цитопатии (эритроцитопатии). При гемоглобинопатиях в эритроцитах содержится Нb аномальной структуры, при энзимопатиях имеется дефицит или аномалия фермента, при эритроцитопатиях нарушена структура клеток.


Картина крови при серповидноклеточной анемии

Картина крови при талассемии

Картина крови при наследственной микросфероцитарной гемолитической анемии

Эритроцитозы

Эритроцитозы — это состояние, характеризующееся увеличением содержания эритроцитов и гемоглобина в единице объема крови.

Различают абсолютные и относительные эритроцитозы.

Абсолютные эритрцитозы

- Первичный эритроцитоз, истинная эритремия (болезнь Вакеза)
- II Вторичные эритроцитозы

Вторичные эритроцитозы

1. Абсолютные эритроцитозы

- а) Адекватные (компенсаторные) эритроцитозы, обусловленные генерализованной гипоксией (общие расстройства кровообращения, заболевания дыхательной системы, пребывание на большой высоте).
- б) Неадекватные эритроцитозы, в результате повышенной продукции эритропоэтина и других факторов стимулирующих эритропоэз без гипоксии (заболевания почек, опухоли мозжечка, эндокринные расстройства).

2. Относительные эритроцитозы

Возникают при обезвоживании организма (неукротимая рвота, профузные поносы, быстро развивающие отеки, недостаток поступления воды в организм).

Первичный эритроцитоз, истиная эритремия (болезнь Вакеза)

Истиная эритремия – системное заболевание крови опухолевой природы с преобладанием эритроидной пролиферации. Имеет место нецелесообразная неконтролируемая пролиферация стимуляции эритропоэтинами. В картине крови наблюдается резкое увеличение количества Эр, Hb, ретикулоцитов, Ht. Отмечается гранулоцитоз, тромбоцитоз (панцитоз), гиперволемия (преимущественно за счет увеличения эритроцитов). Повышается артедавление, увеличена вязкость крови, риальное капилляры расширены, кровоток в сосудах микроциркуляторного замедлен, наблюдается стаз. Кожные покровы гиперемированы, отмечается повышенное тромбообразование. Высокая частота тромбоза сосудов обусловлена полицитемией, повышением вязкости крови, снижением скорости кровотока в сосудах, также тромбоцитозом. В последующем развивается сердечная недостаточность и очень выраженная гипоксия.

Экспериментальные анемии

- 1. Постгеморрагические анемии.
- 2. Гемолитические анемии (фенилгидразин)
- 3. Нейрогенные анемии
- 4. Органопривные анемии
- 5. Алиментарные анемии
- 6. Гиперхромная мегалобластическая анемия

Для прохождения теста нажмите здесь