
ЭЛЕКТИВ Физиологические основы клинических методов оценки систем пищеварения, выделения и обмена веществ

Фракционное исследование желудочного сока с помощью тонкого зонда

Этапы желудочного зондирования

- Исследование секреции натощак
- Исследование базальной секреции
- Исследование стимулированной секреции

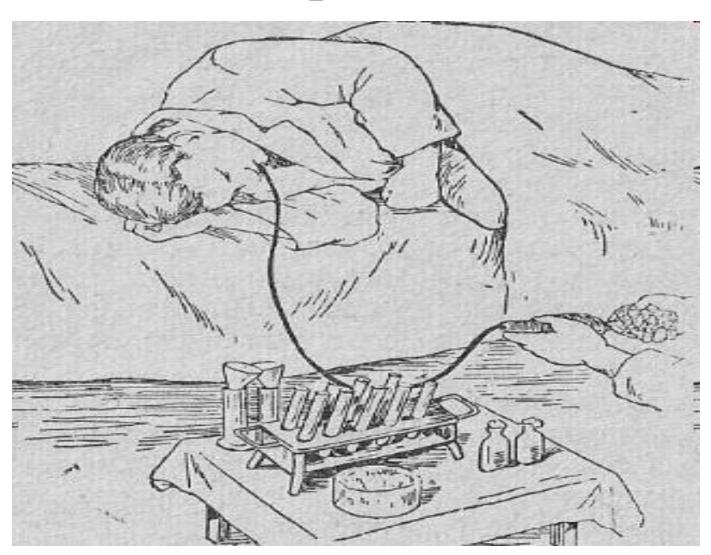
Определяют следующие показатели желудочной секреции:

- объем сока натощак;
- объем сока в течение часа до стимуляции (базальная секреция);
- объем сока в течение часа после стимуляции;
- общую кислотность, свободную соляную кислоту и содержание пепсина;
- рН желудочного сока;
- дебит-час.

Расчет дебит-часа

Продукцию HCl вычисляют за 1 час (дебит-час) и выражают в ммоль/ч или мг/ч.

$$\Pi = V1 \cdot E1 \cdot 0,001 + V2 \cdot E2 \cdot 0,001 + V3 \cdot E3 \cdot 0,001 + V4 \cdot E4 \cdot 0,001,$$


- где V объем порции желудочного содержимого в мл,
- Е концентрация HCl в титрационных единицах (у взрослых общей кислотности, у детей свободной HCl),
- 0,001 количество миллимолей HCl в 1 мл желудочного содержимого при концентрации ее, равной титрационной единице.

Нормативы показателей желудочной секреции

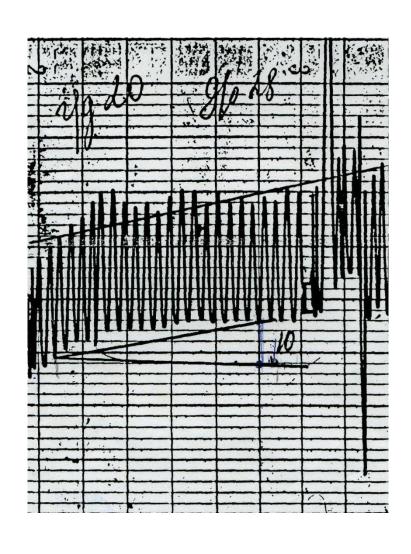
Показатель	Натощак	Базальная секреция	Гистамин в максимальной дозе 0,024 мг/кг.
Объем желудочного содержимого	50 мл	50-100 мл/ч	180-220 мл/ч
Общая кислотность, титр. ед.	20-30	40-60	100-120
Свободная НСІ, титр. ед.	0-15	20-40	90-110
Дебит-час HCl, ммоль/ч	-	1,5-5,5	9-16

В норме желудочный сок базальной секреции имеет рН 1,4-2,8; концентрация пепсина равна 20-40 г/л.

Фракционное дуоденальное зондирование

Фазы фракционного дуоденального зондирования

- 1 холедохус-фаза
- 2 закрытого сфинктера Одди
- 3 А-желчи (фаза пузырного протока)
- Желчь 1,2 и 3 фаз составляет классическую порцию А обычного (нефракционного) дуоденального зондирования.
- 4 фаза желчного пузыря
- 5 фаза печеночной желчи-С


Нормативы показателей дуоденального зондирования

Показатели	Порция «А»	Порция «В»	Порция «С»
Количество	20-35 мл	30-60 мл	50-60 мл/ч
Цвет	золотисто- желтый	темно-коричневый, темно-оливковый	светло-желтый
Прозрачность	прозрачная	прозрачная	прозрачная
Плотность, кг/л	1,00-1,015	1,016-1,035	1,007-1,011
рН	слабощелочная реакция	6,5-7,5	7,5-8,2
Вязкость, капли/мин		68-74	*
Клетки цилиндрического эпителия в поле зрения	единичные	единичные	единичные
Кристаллы холестерина	единичные	единичные	единичные
Кристаллы кальция билирубината	единичные	единичные	единичные

Определение основного обмена методом непрямой калориметрии с неполным газовым анализом

- Усредненный ДК (для смешанной пищи) равен 0,82-0,83 в состоянии покоя.
- КЭК при данном ДК составляет 4,83 ккал.
- Объем потребленного кислорода определяют по спирограмме, зарегистрированной с помощью спирографа закрытого типа.

Спирограмма, используемая для расчета количества потребленного кислорода

- Скорость движения ленты 50 мм/мин
- Масштаб 1 : 20
 (1 мм соответствует 20 мл кислорода)

Пример решения задачи на определение энергообмена методом непрямой калориметрии с неполным газовым анализом

Определить величины фактического и должного основного обмена у мужчины 28 лет, имеющего рост 192 см, вес 87 кг, потребляющего за 1 минуту 290 мл кислорода.

- Принимаем ДК равным 0,83.
- Находим соответствующий КЭК (4,83 Ккал).
- Определяем фактический основной обмен:
 0,290 × 4,83 = 1,4 (Ккал) за 1 мин,
 1,4 × 60 × 24 = 2017 (Ккал) в сутки.
- Определяем должный основной обмен по таблице.

Оценка общего анализа мочи

Оцениваются следующие показатели:

- цвет,
- прозрачность,
- реакция,
- удельный вес,
- белок,
- наличие прочих компонентов,
- микроскопический состав осадка.

Нормативы показателей общего анализа мочи

Показатели	Норма		
Цвет	от светло-желтого до насыщенного желтого		
Прозрачность	прозрачная		
pН	5,0 - 7,0		
Удельный вес	1014 - 1024		
Белок	до 0,03 г/л		
Прочие компоненты	-		
. Микроскопия осадка			
Клеточные элементы	единичные плоские эпителиальные клетки в		
	поле зрения; эритроциты и лейкоциты до 1-		
	5 в поле зрения		
Цилиндры			
Бактерии			
Соли	Ураты, оксалаты, фосфаты		

Более подробно материал изложен в методических разработках для самостоятельной подготовки студентов к практическому занятию элективного курса «Физиологические основы клинических методов исследования систем пищеварения, выделения и обмена веществ», также размещенных на странице кафедры нормальной физиологии.

После изучения лекции и методических разработок необходимо пройти тестирование при помощи сервиса Гугл-формы. Пожалуйста, корректно заполняйте поля: ФИО, факультет и номер группы.

Ссылка для прохождения тестирования: https://forms.gle/XdyMf2V7jxdeokcn8