Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановская государственная медицинская академия» Минздрава Российской Федерации Кафедра гистология, эмбриологии, цитологии

Реферат на тему: «Гемопоэз»

Выполнили работу: студентки 10 группы педиатрического факультета
Азизова Любовь Артуровна и Кюрюглиева Эмиля Тагировна
Руководитель: доктор медицинских наук, профессор
Виноградов Сергей Юрьевич

Содержание

- 1. Введение
- 2. Современная модель гемопоэза. Понятие о стволовых клетках крови (СКК) и колониеобразующих единицах(КОЕ). Характеристика плюрипотентных предшественников (стволовых, комминтированных клеток), унипотентных предшественников, бластных форм.
- 3. Эмбриональный гемоцитопоэз: развитие крови как ткани(гистогенез)
- 4. Постэмбриональный гемопоэз: физиологическая регенерация крови
- 5. Морфологически неидентифицируемые и морфологически идентифицируемые стадии развития клеток крови (характеристика клеток в дифферонах: эритроцитов, гранулоцитов, моноцитов, Т-лимфоцитов, В-лимфоцитов и тромбоцитов).

Введение

Клетки крови играют ключевую роль в доставке кислорода к тканям, защитных реакциях организма и гемостазе. Эритроциты живут в среднем 120 сут, тромбоциты - 7-10 сут, а гранулоциты - всего 6-8 ч. Дольше всех могут жить лимфоциты, однако лимфопоэз неэффективен - лишь около 5% клеток в процессе созревания проходят отбор в костном мозге и тимусе и попадают в кровь.

Ежедневно в организме взрослого человека весом 70 кг погибают более 0,5 триллиона дифференцированных клеток, включая 200 млрд эритроцитов и 70 млрд нейтрофилов.

В норме скорость образования клеток крови равна скорости разрушения, но в ответ на увеличение потребности один или несколько клеточных ростков гиперплазируются.

Таким образом, поддержание постоянства состава крови требует непрерывного образования новых клеток. Этот процесс называется кроветворением. Он обеспечивается стволовыми кроветворными клетками - небольшой (0,01%) фракцией костномозговых клеток, из которых возникают все клетки крови.

Гемопоэз - это процесс генерации зрелых клеток крови. Кинетика кроветворения и кроверазрушения — важнейший показатель качества работы функциональной системы крови.

Кроветворная ткань – динамическая, постоянно обновляющаяся структура, механизмы регуляции которой построены по принципу обратных связей.

Закономерная гибель клеток крови в процессе функционирования организма постоянно восполняется вновь образующимися клетками, создавая условия для поддержания гомеостаза и жизнедеятельности организма. Огромный пролиферативный потенциал кроветворной ткани обеспечивается стволовыми кроветворными клетками (СКК), или плюрипотентными стволовыми клетками (ПСК).

СОВРЕМЕННАЯ МОДЕЛЬ ГЕМОПОЭЗА

Современная унитарная теория кроветворения предполагает, что родоначальница всех форменных элементов крови — стволовая кроветворная клетка. Морфологически она сходна с малыми лимфоцитами и способна к самообновлению. СКК медленно размножается и дифференцируется, образуя несколько различных типов коммитированных клеток, имеющих ограниченные потенции — коммитированы к дифференцировке в один клеточный тип, пролиферируют и (в присутствии факторов роста) дифференцируются в клетки-предшественницы (И.Л. Чертков, 1990). Существует мнение, что программирование (коммитирование) клетки на определенный путь дифференцировки происходит случайным образом. Клетки-предшественницы — клетки одной линии, начинающейся с коммитированной унипотентной клетки и завершающейся формированием зрелой клетки крови. Таким образом, в гемопоэзе участвуют СКК, коммитированные унипотентные клетки и клетки-предшественницы.

Каждая СКК при делении образует две дочерние клетки — одна из них вступает на путь пролиферации, вторая — на самоподдержание популяции СКК. Пролиферативную активность стволовых клеток модулируют колониестимулирующие факторы и интерлейкины (особенно активны ИЛ-3).

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 10⁵ клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их дифференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис.1). Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования

определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные).

Согласно современной схеме кроветворения, все клетки в зависимости от степени дифференцировки объединены в 6 классов:

- I- класс полипотентных клеток-предшественников, включает стволовые кроветворные клетки;
- II класс частично детерминированных полипотентных клетокпредшественников. Его существование выявляется опосредованно. Например, при облучении в пострадиационном периоде восстановления крови происходит временный подъем количества эритроцитов и гранулоцитов. Основная масса клеток сосредоточена в костном мозге, но не исключается возможность их перемещения в пределах кроветворной системы. Содержание клеток в крови незначительное;
- III класс унипотентных клеток-предшественников, способных к ограниченному самоподдержанию (например, в течение 10-15 митозов, затем погибают). Класс формируют клетки-предшественники родоначальных клеток отдельных рядов кроветворения:
- а) эритропоэтинчувствительная клетка;
- б) колониеобразующая в культуре клеток (клетки, дающие начало гранулоцитам и макрофагам);
- в) тромбоцитопоэтинчувствительная клетка;
- г) клетки-предшественники Т- и В-лимфоцитов.

Клетки-предшественники всех уровней морфологически не идентифицируются, их характерная особенность — существование в двух структурно различных формах — бластной и лимфоцитоподобной;

IV – класс морфологически распознаваемых пролиферирующих клеток. Представлен бластными формами, дающими начало отдельным рядам кроветворения – гранулоцитам, эритроцитам, моноцитам, мегакариоцитам и лимфоцитам. При окраске по Романовскому – Гимзе ядра клеток имеют красно-фиолетовый цвет, нежно-сетчатую структуру, несколько хорошо очерченных ядрышек и ободок цитоплазмы от светлоголубого до интенсивно-синего (базофильного) цвета. Форма ядра бластных клеток круглая, реже овальная или овально-вытянутая. Ядро расположено в центре или несколько смещено к одному из полюсов клетки.

Характерная особенность клеток – преобладание площади ядра над площадью цитоплазмы;

V – класс созревающих клеток;

VI – класс зрелых клеток с ограниченным жизненным циклом (А. И. Воробьев и соавт., 1995).

Впервые представление о родоначальных клетках крови сформулировал А. А. Максимов, он же указал на их морфологическое сходство с лимфоцитами, что нашло подтверждение и развитие в новейших экспериментальных исследованиях.

ЭМБРИОНАЛЬНЫЙ ГЕМОПОЭЗ

Различают эмбриональный гемопоэз, который приводит к развитию крови как ткани, и постэмбриональный гемопоэз, включающий процесс физиологической регенерации крови. Наиболее полно гемопоэз изучен у млекопитающих животных и птиц. В эмбриональный период у человека и млекопитающих животных в развитии крови выделяют 3 стадии, последовательно сменяющих друг друга.

Развитие эритроцитов называют *эритропоэзом*, развитие гранулоцитов - *гранутоцитопоэзом*, тромбоцитов - *тромбоцитопоэзом*, развитие моноцитов - *моноцитопоэзом*, развитие лимфоцитов и иммуноцитов - *лимфоцито-и иммуноцитопоэзом*.

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга:

- 1) мезобластический, когда начинается развитие клеток крови во внезародышевых органах мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед. развития зародыша человека) и появляется первая генерация стволовых клеток крови;
- 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед);
- 3) медуллярный (костномозговой) появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к

рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофильной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис.2). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эритробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегалоцитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоциты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (рис.2). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т.е. интраваскулярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - нейтрофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед. эмбрионального развития, а с 5-й нед. она становится центром

кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируются гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес. внутриутробного развития, и на 7-8-й нед. ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес. внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоцитов в селезенке достигает максимума на 5-м мес. внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед. эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегакариоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед. развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед., когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лимфобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (рис.2). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textusmyeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textuslymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов) и др.

Характеристика морфологически неидентифицируемых и идентифицируемых стадий развития клеток крови.

Морфологически неидентифицируемые стадии гемопоэза включают в себя стволовые клетки, полустволовые и унипотентные клетки.

При делении стволовых клеток образуются 2 типа клеток, которые получили название полустволовых клеток. Из клеток 1 типа (клетка-предшественник миелопоэза) образуются в дальнейшем эритроциты, гранулоциты, моноциты, тромбоциты, а из клеток 2 типа (клетка-предщественник лимфопоэза) развиваются, прежде всего, различные лимфоциты. В силу того, что направления развития полустволовых клеток несколько ограничены, по сравнению со стволовыми клетками, они называются частично детерминированными. В результате пролиферации и дифференцировки полустволовых клеток образуются унипотентные клетки, которые могут дифференцироваться только в одном направлении. В силу ограничения направления их развития такие клетки получили название строго детерминированных клеток. Кроме того, унипотентные клетки называются КОЕ или КОК. Из первой полустволовой клетки образуется 6 унипотентных клеток: для эритроцитов (КОЕ-Э), для нейтрофилов (КОЭ-н), для эозинофилов (КЭЕ-эо), для базофилов (КОЭ-б), для моноцитов (КОЭ-м) и для тромбоцитов (КОЭ-мкц). Из второй полустволовой клетки образуются унипотентные клетки: клетка-предшественник для В-лимфоцитов, клеткапредшественник для Т-лимфоцитов, унипотентная клетка для натуральных (естественных) киллеров и клетка-предшественник для дендритных клеток 2 типа.

Дифференцировка клеток в унипотентные клетки сопровождается формированием на них рецепторов к гемопоэтическим гормонам (ИЛЗ, эритропоэтин, тромбопоэтин), нейромедиаторам, катехоламинам, тиреотропному гормону, тестостерону, которые регулируют пролиферацию и дифференцировку клеток крови. Первоначально образуются бипотентные клетки (гранулоцитарно-моноцитарные, эритроцитарно-мегакариоцитарные). Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов (гемопоэтинов)- эритропоэтинов (для эритробластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лимфобластов), тромбопоэтинов (для мегакариобластов) и др.

Морфология стволовых, полустволовых и унипотентных клеток изучена недостаточно, поэтому они практически неразличимы и составляют морфологически неидентифицируемые стадии гемопоэза. Дальнейшая дифференцировка унипотентных клеток изучена достаточно полно, так как

дифференцирующиеся клетки отличаются ярко выраженными признаками. Они составляют морфологически идентифицируемые стадии гемопоэза.

Эритроцитопоэз- процесс образования эритроцитов из унипотентной клетки (КОЕ-э) осуществляется под влиянием эритропоэтина, вырабатываемого в почках (90%) и печени (10%) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающего эритроцитопоэз. Под влиянием эритропоэтина унипотентная клетка дифференцируется в проэритробласт. Проэритробласт - это крупная клетка размером 18-25 мкм, содержит крупное круглое ядро, много свободных рибосом, в которых начинается синтез гемоглобина. Цитоплазма этих базофильная. Из проэритробластов образуются базофильные эритробласты. Эта клетка 15-18 мкм, цитоплазма резко базофильная за счет накопления свободных рибосом. Базофильные эритробласты совершают 2-3 деления и превращаются в полихроматофильные эритробласты. Эти клетки размером 10-12 мкм, базофилия снижается за счет накопления гемоглобина и цитоплазма окрашивается в сиреневый цвет, число свободных рибосом уменьшается и накапливаются зерна ферритина. При делении и дифференцировке этих клеток образуются оксифильные эритробласты (нормобласты), у которых ядро сморщивается и становится пикнотичным, гемоглобина много, цитоплазма окрашивается оксифильно. Клетка небольших размеров - 8-10 мкм. На этой стадии пикнотичное ядро выталкивается из клетки. При этом, в цитоплазме сохраняются единичные органоиды (рибосомы и митохондрии). Клетка утрачивает способность к делению. В результате этих преобразований оксифильный эритробласт (нормобласт) превращается в безъядерную клетку - ретикулоцит. Эта клетка содержит в своем составе небольшое количество органоидов. В периферической крови ретикулоцит в течение 1-2 суток дифференцируется в зрелый эритроцит. Таким образом, в процессе эритроцитопоэза наблюдается уменьшение размеров клетки (приблизительно в 2 раза), происходит уплотнение и исчезновение ядра, накопление гемоглобина, что обусловливает оксифилию, уменьшение содержания РНК, клетка теряет способность к делению. Из одной стволовой клетки крови в результате 12 делений в течение 7-10 дней образуется 2048 зрелых эритроцитов.

Гранулоцитопоэз — процесс образования гранулоцитов из унипотентных клеток. В результате пролиферации и дифференцировки из унипотентной клетки образуются миелобласты. Это клетки крупных размеров до 18-20 мкм, содержат крупное и круглое ядро, лежащее в центре. В этих клетках хорошо развиты структуры аппарата Гольджи, лизосомы. В цитоплазме содержится много миелопероксидазы и кислой фосфатазы. Специфическая зернистость в этих клетках отсутствует. В силу большого количества свободных рибосом цитоплазма миелобластов резко базофильная. При делении этих клеток образуются промиелоциты (нейтрофильные, базофильные и оксифильные). Промиелоциты являются самыми крупными клетками (до 27 мкм). На этой

стадии в клетках начинает появляться специфическая зернистость. В результате 3 –х делений образуются миелоциты (нейтрофильные, базофильные и эозинофильные), имеющие размеры 12-18 мкм. Ядро становится слегка бобовидным. Количество органоидов увеличивается. Содержание вторичной (специфической) зернистости возрастает. В результате деления и дифференцировки эти клетки превращаются в метамиелоциты. Размеры этих клеток не превышают 8-10 мкм, ядро бобовидной или подковообразной формы, увеличивается содержание специфической зернистости, клетка приобретает способность к миграции. Эти клетки не делятся и известны под названием «юные нейтрофилы». При дифференцировке эти клетки в периферической крови превращаются в палочкоядерные, а затем в сегментоядерные гранулоциты. Таким образом, в процессе гранулоцитопоэза (10-14 суток) клетка уменьшается в размерах, происходит уменьшение, уплотнение и сегментация ядра, накопление специфической зернистости, приобретение способности к миграции и к фагоцитозу, накопление органоидов, в том числе лизосом. Гранулоцитопоэз регулируется интерлейкинами 3,4,5.

Тромбоцитопоэз -процесс образования кровяных пластинок (тромбоцитов) из унипотентных клеток – (КОЕ-мкц) под влиянием тромбопоэтина. В результате дифференцировки унипотентных клеток образуются мегакариобласты. Мегакариобласты являются гигантскими клетками костного мозга, размеры которых превышают 20 мкм и составляют, как правило, 20-25 мкм. Ядро этих клеток характеризуется наличием многочисленных инвагинаций. Эти клетки способны к митозу, однако в процессе дифференцировки они утрачивают способность к митотическому делению и делятся только эндомитозом, что обусловливает плоидность и размеры ядра. В результате дифференцировки из мегакариобласта образуется промегакариоцит. Эта клетка более крупная и достигает 30-40 мкм. Ядра этих клеток полиплоидные (тетраплоидные -4n и октоплоидные -8n), имеются центриоли. Клетка сохраняет способность к эндомитозу. Ядра становятся бухтообразными, с многочисленными перетяжками и сегментацией. Клеточная оболочка содержит выраженные инвагинации. Из промегакариоцитов возникают мегакариоциты. Это крупные клетки размером до 80 мкм. Ядро распадается на несколько мелких ядер, которые содержат 16-32 и хромосом. Цитоплазмы в этих клетках много и в ней различают две зоны: околоядерную зону, содержащую органоиды и мелкие азурофильные гранулы и наружную (эктоплазму) зону, содержащую компоненты цитоскелета и окрашивающуюся слабобазофильно. По функции различают резервные мегакариоциты и зрелые, активированные мегакариоциты, которые образуют тромбоциты. Зрелые мегакариоциты более крупные (до 100 мкм). Светлая эктоплазма образует многочисленные псевдоподии в виде тонких отростков, направленных к стенке сосудов костного мозга. В цитоплазме мегакариоцита накапливаются многочисленные микровезикулы, из которых постепенно формируются

демаркационные мембраны, разделяющие цитоплазму на отдельные участки диаметром 1-3 мкм (будущие тромбоциты). Псевдоподии мегакариоцитов проникают в полость синусоидных капилляров, где от них отделяются кровяные пластинки.

Процесс образования тромбоцитов из стволовой клетки занимает 10 суток. Из одного мегакариоцита образуется до 16000 тромбоцитов. Таким образом, тромбоциты образуются интраваскулярно в отличие от других форменных элементов крови.

Моноцитопоэз — процесс образования моноцитов из унипотентной клетки (КОЕ-м). Первоначально из унипотентной клетки образуется монобласт. Эта крупная клетка диаметром 18-20 мкм, ядро круглое и располагается в центре. В процессе дифференцировки монобласты превращаются в промоноциты и моноциты. В процессе дифференцировки клетка постепенно увеличивается в размерах, в ней увеличивается содержание лизосом, уменьшается базофилия, а ядро из круглого превращается в бобовидное и даже подковообразное. В периферической крови моноциты циркулируют непродолжительное время (приблизительно 30-32 часа), после чего они поступают в ткани, где превращаются в тканевые макрофаги. В роли тканевых макрофагов они существуют около 60 суток.

Лимфоцитопоэз проходит следующие стадии: СКК \rightarrow КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) \rightarrow унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки) \rightarrow лимфобласт (lymphoblastus) \rightarrow пролимфоцит \rightarrow лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus).

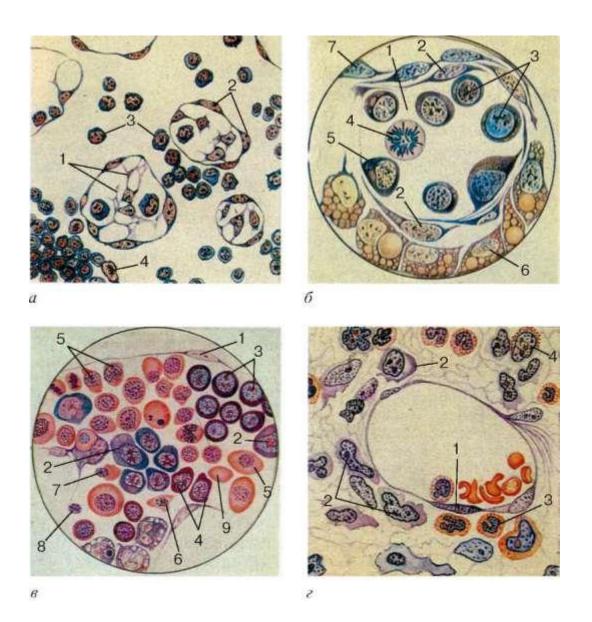
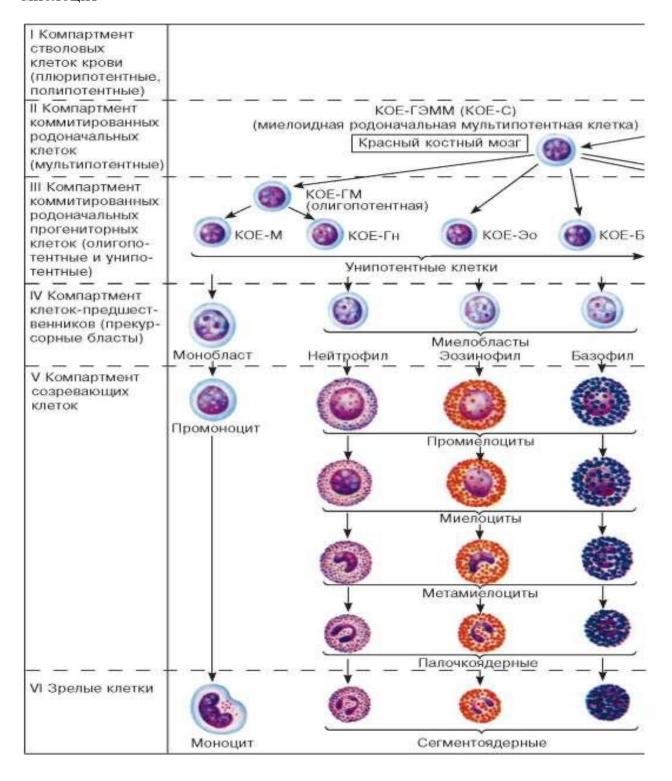



Рис. 2. Эмбриональный гемопоэз (по А. А. Максимову):

a - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; 6 - поперечный срез кровяного островка зародыша кролика 8,5 сут.: 1 - полость сосуда; 2 - эндотелий; 3 - интраваскулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; 6 - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нормобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; 2 - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий

сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

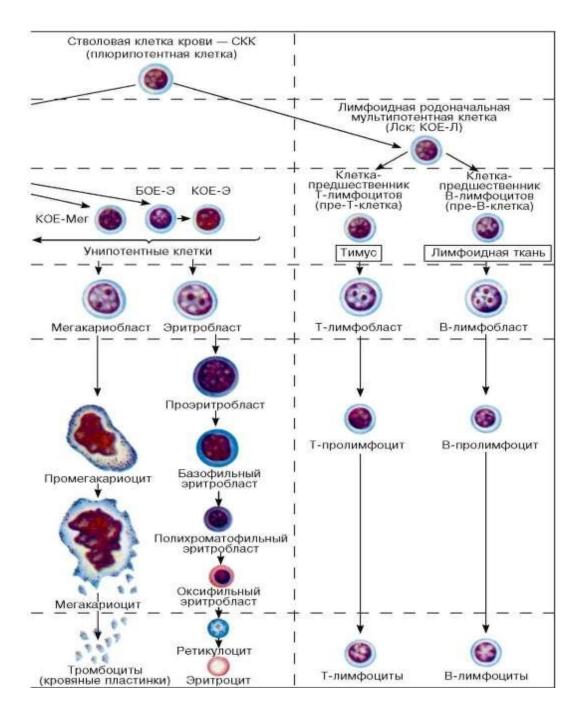


Рис. 1. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной). Стадии дифференцировки крови: I-IV - морфологически неидентифицируемые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил; БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально.

Список литературы:

*Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.; под ред. Ю. И. Афанасьева, Н. А. Юриной. - 6-е изд., перераб. и доп. - М.: ГЭОТАР-Медиа, 2014. - 800 с.: ил.

*Е.А. Липунова, М.Ю.Скоркина ФИЗИОЛОГИЯ КРОВИ Белгород 2007 УДК 612.11–019 ББК 28.91 Л61 8 страница